THE DEVELOPMENT AND COMPARATIVE STRUCTURE OF THE GIZZARD IN THE ODONATA ZYGOPTERA.

BY HELEN T. HIGGINS.

The following study ${ }^{1}$ was undertaken on the advice and moder the direction of Dr. Philip P. Calvert, instructor in Zoölogy in the University of Pennsylvania.

Dr. Ris' work on the gizzard of the Odonuta and Dr. Calvert's study of Californian forms strongly suggested the phylogenetic importance of this organ.

The present study has been limited to the more primitive Odonatu-the suborder Zygoptera.

I am indebted to Dr. Calvert for the material placed at my disposal, for many of $m y$ preparations, including his slides used in his paper of 1899 mentioned later, for the determination of genus and species in every case, and for the suggestion of the structural formula used in describing the gizzards.

In 1896, Dr. F. Ris published ${ }^{2}$ a paper entitled Untersuchungen - über die Gestalt des Kaumagens bei den Libellen und ihren Larven.

The results of his investigations are briefly outlined here:
In the Odonata the fore-gut extends to the third abdominal segment. In larva and imago alike the gizzard is found at the posterior end of the fore-gut in the second abdominal segment. It is formed by a thickening of the muscle layer, and by a modification of the chitinons coat of the fore-gut to form folds armed with teeth. The number of these folds is four, eight or sixteen. The metamorphosis to the imago shows a regular reduction in the strength and complication of the elements, but their number varies greatly. At the metamorphosis, the larval lining is shed with the chitinous coat of the exterior of the borly; Dr. Ris states that he found in a Libellulu, directly after metamorphosis, the old gizzard lining enclosed within the new. He examined the larval and adult

[^0]form of Culoptery.v virgo, C. splendens, Pyprhosomu minuu, P. tenellum, Agrion puella and pulchellum, Erythronma (najas), Enallagmu (cyathigerum), Ischmura (elegans) and Platyonemis pennipes, Lestes virens, Gomphus, Lisehma, Anax, Cordulegaster annulatus and bidentatus, Cordulia eneen, Diplax, Libellula, Oithetrum.
The conclusions drawn by Dr. Ris from his investigations are as follows:

Larve.-The original form of the gizzard shows a division into sixteen longitudinal folds, eight broad and eight narrow, which bear an armature of irregularly placed teeth. This type is found in the Calopterygince.

A higher development of the organ appears in the typical group of the Agrionince ; the sixteen folds show a greater number of teeth and a more complicated arrangement of these.

The legion Lestes shows a reduction of the sixteen folds to eight, apparently through the loss of the smaller folds. These eight folds are again divided into four broad and four narrower folds. In the Anisoptera (Gomphus and Eschna) there is reduction to four equal, similar folds. Finally, Corduleguster and the Libellulide differentiate the folds into two pairs of teeth, so that the original radial symmetry is changed to bilateral.

Imagos.-The series easily traced in the larval forms is somewhat confused in the imagos, owing to the reduction which invariably occurs. The least reduction from larva to adult is found in the Calopterygince; more is shown in the Agrionince, where is seen the tendency to eliminate the smalier fold in certain individuals; the strongest reduction oceurs in Gomphus and Esehna; in Corduleyaster and in the Libellutide scarcely more than a hint of the relation to the larva remains.

This purely morphological development from the radial symmetry of numerous elements of an organ to the bilateral symmetry of a few elements runs parallei with the phylogenetic relationships of the single groups.

In a paper ou the Odonata from Tepic, Mex., ${ }^{3}$ 1899, Dr. Calvert gives notes on the gizzards of the forms studied by him. Contrary to Dr. Ris and other previous writers, he finds the position of the junction of fore- and mid-gut, and therefore of the

[^1]gizzard, to be very variable. ILe examined the gizzards of Hetcrina american', Lichilestes grundis, Lestes tenuatus, Argin pulla ind aurioides, Erythagrion valerm, Ischnura Ramburii var. creduh, Anax jumius, Herpetogomphus elaps, Pentala hymencea, Psenloleon superbus, Trumen onnstr, Dythemis stevilis, Micrathyria Hugeni, Oithemis jerruginea and Diplax corrupta.

Dr. Ris and Dr. Calvert agree generally on the morphology of the forms studied by both. They differ, however, in the phylogenetic position of the legion Lestes.

Dr. Calvert does not draw any plylogenetic conclusions from his studies, considering the examination of many more forms necessary before this can safely be done.

Preparation of Present Muterial. - The present study has been based upou representatives of the sub-families Culopterygince and Agrionince collected from every continent.

The preparations have largely been made from dried ${ }^{4}$ specimens. From these the abdomens were cut off at the base of the third segment and soaked in seventy per cent. alcohol until softened. Some of these, even after long soaking, were so brittle that only fragments of the gizzard could be mounted. In cases where, because of its fragmentary condition, the structure of the gizzard is at all doubtful, I have put an interrogation point after the descriptive formula. The remainder of the matcrial studied had been preserved in alcohol or formaline.

To obtain and prepare the chitinous lining of the gizzard for study, the abdomen was slit open along one of the membranous pleura, the gizzard located, and separated from the rest of the alimentary canal by a fine pair of scissors. The gizzard was cut open, the muscular coat removed with needles, and the chitinous lining spread out flat upon it slide. After cleaning, this was mounted in Canada balsam, making a very distinct preparation for study. In nearly every case the dried specimens from which the gizzards have been removed have been again put together, so that their value as ordinary museum material has been little, if at all, impaired.

The larva studied belong mainly to the sub-family Agriomine. They were collected from the vicinity of Philadelphia and were either fresh or preserved in alcohol.

[^2]
Development of the Gizzalid.

The gizzard is a specially thickened and cuticularized portion of the alimentary canal, appearing at the junction of fore- and midgut, and projecting slightly into the latter. Externally is a coat of circular muscle fibres, thicker in the larres than in the adult and rarying in thickness in adults of different genera. Within is a layer of epithelial cells, at first one cell in thickness, but later becoming many cells thick in definite areas, to form folds projecting into the lumen of the caual.

In the forms examined, four folds or some maltiple of four to as many as thirty-two have leen found-sisteen and eight being the numbers most commonly occurring.

From the epithelial cells is developel the inuer chitinons coat of the gizzard, which is thin on the spaces between folds, becoming thickened on the folds and forming here horny teeth of various sizes.

The writer has examined Agrionine larve from the time of hatching to the period immediately preceding metamorphosis.

In larvex just hatehed no evidence of any gizzard-armature was found.

The following statements refer to larre of Isehmura verticalis Say:

In larva 3 and 4 mm . in length ${ }^{5}$ the gizzard is quite clearly marked (fig. 2.5). The chitinous coat shows sixteen folds or fields, eight larger alternating with eight smaller. Each larger field is armed with teeth arranged in two groups, an auterior and a posterior, the latter occupying about the centre of the gizzard. The posterior group consists of two large pointed teeth, each enclosed on its outer side by four to five small teeth. The auterior group comprises two pointed narrow teeth intermediate in size between the two sets mentioned above.

Each smaller ficld has one group of three to four small teeth, which are at the same level as that of the posterior group of the larger fields.

A larra 6 mm . long shows practically the same armature, but on the smaller fields also there are often two groups, the anterior comprising one to two teeth, the posterior three to four.

[^3]A larra 8 mm . long shows considerable difference in the size and number of the tecth (Pl. IV, fig. 26). The anterior groups of both fields show an increase in the number of teeth, which remain approximately the same in size. In the posterior groups the smaller teeth show decrease in size with increase in number; the two large teeth of the larger fold remaining the same in size.

A larval of 10 mm . length shows much the same structure.
Three larve of 15 mm . lenglh show the same line of development carried a little further (tig. 27), an increase in number of the tecth of the anterior groups of both folds, slight increase in number with continued decrease in size of the small teeth of the posterior groups of both folds.

In all larves studied the gizzard was found in the second abdominal segment.

Young imagos of Ischnura verticalis were examined soon after metamorphosis. In those dissected directly after the spreading of the wings ouly the larval gizzard was observed. This lay in the sixth segment. In an adult in which the coloring was distinctly developed, the larval gizzard lining lay immediately within that of the adult, which latter bore a very different armature (PI. III, fig. 17). In still other individuals the adult gizzard was in the sixth segment, while the lining of the larval gizzard and of the fore-gut of the larva, coiled up in a mass, lay in the lumen of the canal in the seventh segment. These observations suggest the possibility of learning something of the structure of the gizzard of the larvie of exotic species by insrecting the contents of the alimentary canal of imagos whose colors show them to have but recently transformed.

To sum up the development of the gizzard lining in Ischnura verticalis, it is seen that from its carliest appearance (which in the present study was found in a larva 3 mm . long) there is a steady increase in the number of teeth on all folds with a dectease in size in those of posterior groups. At metamorphosis the gizzard moves backward from the second to the sixth abdominal segment. A new chitinous coat is formed on the fore-gut, with a new gizzard armature. The larval lining lying within the adult lining becomes loosened from it and finally separates entirely, and is found, within a few hours after metamorphosis, lying coiled up within the canal. It is probable that in still older imagos the cast-off larval gizzard
lining lies still further posterior in the canal, and is finally voided through the anus.

The Gizzard of Various Adults.

The position of the gizzard in the imago was found to vary from the third abdominal segment to the seventh. In the majority of forms examined the gizzard lies in the centre or posterior extremity of the sixth segment; in a smali number it lies in the fifth, in a still smaller in the seventh, aud in a very few in the third or fourth segment.

Variations in the position are frequently found in different speeies of the same genus and evers in different individuals of the same species.
A male of Culopteryx apiculis had the gizzard in the anterior end of the sixth segment, a female in the centre of the fiftl; while in a male of C. cornelia it was located in the fifth segment.

In a male of Phaon iridipennis the gizzard was found in the posterior end of the sixth segment; in a male of P. fuliginosus in the third, and in a female of the same species in the sixth segment.

In four species of Testulis the position varied only from the posterior end of the fifth to the middle of the sixth segment. The same variation was seen in five species of Hetcerina, and likewise in four species of Euphuea.

In the of Libellago caligata the gizzard was found in the third segment, in the σ° in the fifth, and in L. cucta, σ^{3}, in the fourth segment. In four individuals-two species-of Nicromerus it was found in the fifih; in Thore boliviana, 0^{7}, in the centre of the fifth, in \circ in anterior end of seventh; in Euthore hyalina, σ^{7}, in the anterior end of sixth, in O in posterior end of fifth.
Of the Agrioninc. legion Pscudostigma, its position varied in eight individuals, of five genera, from the middle of the sixth to the anterior extremity of the seventh segment; in the Legion Podugrion, in five males and one female of Paraphlebia sp. (group of $Z o e$), the position varied only from the anterior end to the centre of the sixth segnemt; in five species of the genus Heteragrion, from the postericr cod of the fifth to the anterior of the seventh; in the legion Platycnemis, in four genera, the organ was found in the sixth or seventh segment; in the legion Protoneura
-in three species of Dixpuroncure, in three of Neonewia and in three of Piotoneura-the same variation is seen, from the posterior end of the sixth to the anterior of the seventh; of the Legion Agrion it appears in the sixth segment in Hyponeura ligens, Ischnura heterostieta, Enallugma cbrium, geminatum and aspersum, in Vehalemia lais, Ceriugrion glabrum, Anisagrion allopterum and Hemiphlebia mirabilis; in the fifth in Argin putridu, Pyrrhosoma tenellum; in the seventh in Leptugrion macrurtum and Leptobasis racillans; of the legion Lestes it appears in the sixth segment in Lestes dixjuncta and L. ledu.

Armature of tae Adilt Gizzard.

To save the necessity of giving lengthy descriptions of the armature of each gizzard studied, and more especially to render the comparison of these armatures more easy, it was found convenient to coustruct a formula whereby the general structure of the armature might be indicated.

Below is given an explanation of the formule userl:
$\mathrm{F}, \mathrm{F}, \mathrm{f}$, indicate specially chitinized areas of the gizzard lining, whether they bear teeth or uot. They may stand abs abreviations of "field" ("Felder" of Ris) or "fold." Wheñ the fields are approximately alike only one size letter may be usedF; when unlike, F will denote the largest sized areas, F medium sized, f small sized When the arets are of but two sizes F and f may be userl.

Arabic fiyures following F, F, f, denote the number of teeth borne by each field respectively; when the number is great (40 or more) n is used to denote this fact. When in oue and the same gizzard the teeth are of different sizes this is indicated by use of the marks', ", "';' denotes the largest sized teeth, " medium sizel, '" smallest sized.

Wherever a gizzard consists of a repetition of similar fields, the formula may be shortened by enclosing the repeated arrangement within parentheses, and placing the proper coëfficient before the parenthesis to indicate the number of times the repetition occurs.

When the same field contains two groups of teeth separated by a distinet interval, these two groups are indicated in the formula loy placing one above the other with a horizoutal line between them, as in common fractions, the anterior group of teeth being repre-
sented by the numerator, the posterior group of teeth by the denominator.

The abbreviation rece. is usel to indieate recurved teeth, as in Paraphlebia.

To illustrate the application of the formula, I may refer to fig. 1:3, Pl. III, of Aigiu bipmetulutu. In this species there are sixteen folds, eight larger and eight smaller. The formula would be therefore: \& (F 12-14, f 1-3), where F represents the larger fields, with teeth varying in number from twelve to fourteen; f, the smaller folds with teeth varying from one to three.

The teeth here are all of approximately the same size.
For Tunthagrion erythroncuram (fig. 15), where the teeth have a definite arrangrement into groups, we must use a more complicated formula. Here there are sixteen fields, each field showing two distinet groups of teeth. The anterior groups are represented by the numerators of the fractions, the posterior by the denominaturs. The difference in size of the teeth is indieated by the marks ' and ", the former representing the larger teeth, the latter the smaller ones.
The formula therefore is $8\left(\mathrm{~F}_{2^{\prime \prime}} \frac{6^{\prime \prime}-8^{\prime \prime}}{\prime 0^{\prime \prime}-12^{\prime \prime}}, \mathrm{f} \frac{1^{\prime \prime}-3^{\prime \prime}}{5^{\prime \prime}}\right)$.
The omission of one or more folds from an individual gizand is not uncommon (see fig; 12), so that often it is only possible to construct a formula when several specimens of a given species are examined and compared.

The following list of the species of adults whose gizzard-armatures have been studied gives the number of each sex examived, the abdominal segment in which the gizzard was found (and often whether in the anterior or posterior part of the segment), the locality whence the material came and the armature formula:

Sub-family CALOPTERYGINA.

Legion 1.-Calopteryx Selys.

Calopterys muculatu Beauv. 20^{77}. Pennsylvania. \pm (F 6-8, f $2-4$, F $4-5$, f $2-4$).

Calopteryx apicalis Burm. ${ }^{\text {on }}$. 6th segment, ant. Tom's

Calopterys apicalis Burm. f. 5th segment, ant. Tom's River, N. J. 4 (F $6-$ - , f $2-4$, F $\overline{3}-7, f 2-4$).

Calopteryx cornclia Selys. 20^{\top}. 5th segment, post. Japan. 4 (F 12-13, f 6-7, F 11-12, f 6-7).

Sapho orichalcea MeLach. 1 ㅇ. 4-5̈th segments. Kamerun, W. Africa. 4 (F 5-7, f 5-6, F 6-7, f 5-6).

Stipho ciliata Fabr. 10^{\top}. 5th segment, post. Bismarckburg, W. Africa. 8 (F 8-9, f 3-6).

Umma (Cleis) longistigma Selys. 1 ơ. Kamerun, W. Africa. 8 (F 20-25, f 3-5).

Mnais strigata Selys. 1 \&. 4th segment. Japan. 4 (F 8-10, f $7-9$, ₹ $8-9$, f $7-9$).

Phuon fuliginozus Selys. 1 ㅇ. 6th segment. Madagascar. 4 ($\mathrm{F} 4-8$, f 3-4, F 4-5, f 3-4).

Phaon fuliginosus Selys. $10^{\text {T. }}$. 3d segment. Madagascar. 4 (F 4-8, f 3-4, F 4-5, f 3-4).

Phaon iridipennis Burm. $10^{\text {T. }}$. 6th segment, post. Be Kilus. 4 (F 4-6, f 2-3, f 5-6, f 2-3).

Vestulis luctuosu Burm. 10^{\top}. 6th segment, ant. Java. 4 (F 25-30, f 20-25).

Vestulis luctuosu Burm. 1 q. 5th segment, post. Java. 4 (F 25-30, f 20-25).
 Burma. 4 (F 20-25, f 15).

Vestalis amona Selys. 0^{7} and f. 6th segment. Deli, Sumatra. 4 (F 15-20, f 10-12).

Vestalis apicalis Selys. \&. 6th segment, ant. Nilgiris. 4 (F 10-15, f 8-10).

Hetcrina occisa Selys. σ^{π} and f. 6th segment. Mexico. 8 (F n) .

Heturina titia Drury. σ^{7} and $\%$. 6th segment. Texas. 4 (F n , f n) .

Hetcerina cruentata Ramb. ठ̃. 6ith segment. Mexico. 8 (Fn).

Hetcrina vulneratu Selys. \&. Dublan, Mex. 4 (F n, f n, $\mathrm{F} \mathrm{n}, \mathrm{f} \mathrm{n})$.

Hetuerina vulnerata Selys. 0^{7}. 5th segment. Dublan, Mex. 8 (F n, f n).

Hetcrina americana Fabr. 4-6th segments. Tepic. Mex. 4 (F 11).

Heterina americama．3．6th segment．Pemsylvania． 4 （F n＇$\left.{ }^{\prime \prime}+4^{\prime}-6^{\prime}, \mathrm{f}^{\prime \prime} \mathrm{n}^{\prime}-3^{\prime}-6^{\prime}\right)$ 。

Hetcerina americana．Larval－gizzard from preeeding ot． $4\left(\mathrm{~F} \mathrm{n}^{\prime \prime}+8^{\prime}-1 \underline{2}^{\prime}, \mathrm{f} \mathrm{n}^{\prime \prime}+5^{\prime}-6^{\prime}\right)$ ．

Legion 2．－Euphra Selys．
Euphaca impar Selys． 1 万 ${ }^{\text {th }}$ ．5th segment，post．Borneo． $\delta\left(\mathrm{F}_{\mathrm{n}} \mathrm{f}\right.$ f $\left.0-\mathrm{n}, \mathrm{F} \mathrm{n}, \mathrm{f} 0 \cdot \mathrm{n}\right)$ ．The fields， f ，which are very short， vary greatly in the number of teeth；these in some cases being numerous，in others $2-4$ ，in others seeming to be absent altogether．

Eupheea lura Krüger． 1 3＇．6th segment，post．Borneo． δ（F of f $0 \cdot \mathrm{n}, \mathrm{F} \mathrm{n}, \mathrm{f} 0 \cdot \mathrm{n}$ ）．

Euphea variegata Ramb．J．Java． 8 （F n，f n，F n，f n）．
Euphcea ochracea Selys．子3．Sixth segment，post．Burma． $S_{\text {．}}\left(\mathrm{F}_{\mathrm{n}}, \mathrm{f} \mathrm{n}, \mathrm{Fn} \mathrm{n}, \mathrm{f} \mathrm{n}\right)$ ．

Epallage futime Charp．7．4th segment．Taurus，Asia Minor．$S(F n, f n)$ ．

Legion 3．－Amphipteryx Selys．

Amphiptery．x agrioides Selys． 2 O＇$^{\text {® }}$ ．6th segment．Guatemala． 8 （F $8-10$ ，f $4-5$ ）．

Legion 4．－Libellago Selys．

Libellayo curta Selys． 3^{73} ．tth segment．Abyssinia．\＆（F 10－14， f 6－9，F 10－12，f 6－8）．

Libellago culigutu Selys． 0^{7} ．5th segment．Abyssinia． 4 （F 12－15，f 5－9，F 12－16，f 6－9）．

Libellugo caligata Selys．\＆．3d segment．Abyssinia． 4 （F 12－15，f 5－9，F 12－16，f 6－9）．

Rhinocypha biseriuta Selys．I and 3^{3} ．4th segment．Borneo． 4 （F 6－9，f $3-5$, F $6-9$ ，f $3-5$ ）．

Rhinocyplu Pagenstecheri Först．ō＇．Sumbawa． 4 （F 8－10）， f． 5, f $7-10$ ，f 5 ）．

Micromerus lineatus Burm． 35^{7} ．5th segment．Jaria，Ceylon． 4 （F 10－13，f 3－5，F $9-10$ ，f 3－5）．

Dicromerus obscurus Kirby． 0^{λ} ．5̄th segment．Ceylon． $4_{4}^{\prime}(\mathrm{F} 10$ ，f $4-6, \mathrm{~F} 6-5, \mathrm{f} 4-6)$ ．

Legion 5．－Thore Selys．
Thore boliviana MeLaeh． 3^{\top} ．5th segment．Chulumani， Bolivia． $4(\mathrm{~F} n, \mathrm{f} \mathrm{n})$ ？

Thoie bolikionu MeLach. \&. Tth segment, ant. Chulumani, Bolivia. 4 (F n, f n) ?

Euthoie hyalina Selys. f. Jth segment, post. Road to Coroico, Bolivia. 4 ($\mathrm{I}^{\mathbf{+}} \mathrm{n}, \mathrm{f} \mathrm{n}$)?

Cora marimu Selys. 2 O'. 5th segment, post. Vera Cruz. 4 (F n, f n)?

Coru inca Selys. f. 6th segment. Chulumani. 4 (F n, $f n)$: These became so much broken in dissection and mounting that the formula cannot be stated positively. Fome seem to show twelve bands.

Sub-family AGRIONIN 尼.

Legion 1.-Psoudostigma Selys.
Mergalomepus corulatus Drury. 2 $\mathbf{\sigma}^{3}$. 6th segment. 8 (F 30-35), ($20-25$).

Microxtigme rotundatum Selys. 1 Z. Th segment, ant. Bolivia. 4 (F $35-40$, f 10-16, F 30-35, f 10-16).

Microstigmn anomalum Ramb. σ^{7}. 6th segment. Apehu, Brazil. 4 (F 18-20, f 6-8, F 10-12, f (6-8).

Anomisma abnorme McLach. 6th segment. Rio Bobonaza, Ecuador. 8 (F 18-20, f 8-10)?

Mreintogastei motestus Selys. \&. Bugaba. 8 (Fn, fn).
Mecistoyaster ormutus Ramb. C^{\top}. Th segment. Tepic, Mex. 8 (Fn, f n).

Pseudostigma aberrans Selys. 0^{3}. 5th segment. Atoyac, Mexico. \& (F n, f n)?
Legiou 2.-Podagrion Selys.

Paraphlebia sp. (group of Zoe) $. ~ Ј \sigma^{\top}, 1 \mathrm{f}$. (ith segment. Guatemala. \& (F $\left.2^{\prime}-11^{\prime \prime}-13^{\prime \prime}+4^{\prime \prime}-5\right)^{\prime \prime}$ rec., $\mathrm{f} 3^{\prime \prime}-4^{\prime \prime}$).

Paraphlebin sp. (group of Zoe) var. ठ'. Misantla, Mexico. 8 ($\mathrm{F} 2^{\prime}+8^{\prime \prime}-9^{\prime \prime}+2^{\prime \prime}$ rec.)

Philogenia Berenice Ilag. ठ'. 6th segment. Equitos, Peru. $\delta(F \mathrm{n}, \mathrm{fn})$.

Philogenia cassundra Hag. ©. Cth segment. Chiriqui. $\delta(\mathrm{F}$ n, f n). Teeth much smaller than in Berenice.

Megapodagrion venale Selys. © ' 6th segment. Probably Porto Cabello, Venezuela. S (F $3-7$, f 1-2).

Heteragrion erythrogastrum Selys. ठ'. 7th segment. Bugaba. 4 (F n, f n).

Heteraypion chrysops ITag. ot. lith segment, post. Guatemala. 4 (F n, f $5-8$, F $30-35$, f $5-8$).

Heterayrion chrysops Mag. त. 7th segment, ant. Guatemala. 4 (F n, f 5-8, F 30-35, f 5-8).

Heterayrion inca Hag. 2 - 5-6th segment, Fth segment, ant. 4 (F n, f 20-25, F n, f 20-25).

Heteragrion n. sp. (group of (hrysops). ठ'. Atoyac, Mexico. 8 (F n, f $5-35$).

Legion 3.-Platycnemis Eelys.

Tatocnmis malagussica Kirby. f. 7th segment. Madagascar. $8\left(\mathrm{~F} \frac{\mathrm{n}^{\prime}}{\mathrm{n}^{\prime \prime} \text { rec. }}, \mathrm{f} \frac{\stackrel{20}{ } 0^{\prime}-30^{\prime}}{0}\right.$).

Leptocnemis bilincata Selys. S. Seychelle Islands. 8 (F n, f $15-20$).

Leptocnemis bilineata Selys. \&. Seychelle Island. \& (F n, f $12-19$, f n, f 12-19).

Celiccia octoycsima Selys and f. Th segment, ant. Borneo. $\quad \pm(\mathrm{F}$ (i-12, f 2-4, F 5-8, f 2-4).

Copera atomaria Selys. ? 6th segment, post. Borneo. 4 (F $5^{\prime}-7^{\prime}+\mathbf{n}^{\prime \prime \prime}$ rec., f $1^{\prime \prime}-2^{\prime \prime}$, F $4^{\prime \prime}$, f $1^{\prime \prime}-2^{\prime \prime}$).

Legion 4.-Protoneura Selys.
Disparoneura analis Selys. δ^{3}. 6th segment, post. Borneo. 4 (F $3^{\prime}+\mathrm{n}^{\prime \prime}$, f $3^{\prime}+\mathrm{n}^{\prime \prime}$).

Disparoneura collaris Selys. O^{7} and f. 6th segment, post. Borneo. 4 (F n, fn).

Disparoneura sp. (near delita). os. Bornen. 4 (F n, f n)?
Caconcuru dorsalis. σ° and f. Th segment, ant. Borneo. 4 (F n, f n).

Neonenra n. sp. (group of earnatica). σ^{7}. 7 th segment, ant. Guatemala. 4 ($\mathrm{F} 2^{\prime}+2^{\prime \prime}-4^{\prime \prime}$, f 1^{\prime}, $\mathrm{F} 2^{\prime}+1^{\prime \prime}-2^{\prime \prime}$, f 1^{\prime}).

Neoneura n. sp. (group of rubriventris). O. 7th segment, ant. Equitos, Peru. 8 ($\mathrm{F} 2^{\prime}+20^{\prime \prime}-30^{\prime \prime}$, $\mathrm{f} 1^{\prime}-2^{\prime}+10^{\prime \prime}-20^{\prime \prime}$).

Protonewra n. sp. (group of humeralis). ठ'. 6th segment, post. Guatemala. $8\left(\mathrm{~F} 2^{\prime}+\mathrm{n}^{\prime \prime}, \mathrm{f} 1^{\prime}+\mathrm{n}^{\prime \prime}\right)$.

Protoneura ammentuca Selys. σ^{-7}. 7th segment, ant. Tabasco, Mex. $8\left(\right.$ F $\left.1^{\prime}-2^{\prime}+n^{\prime \prime}, \mathrm{f}^{\prime}+\mathrm{n}^{\prime \prime}\right)$.

Protonewra n. sp. (group of sancta). 2 0^{7} and 2 \& . 7th segment, ant. Tabasco, Mex. $\left\{\begin{array}{l}8\left(\mathrm{~F} \mathfrak{2}^{\prime}+\mathrm{n}^{\prime \prime}, \mathrm{f} 1^{\prime \prime}+\mathrm{n}^{\prime \prime}\right) \text {. } \\ 8\left(\mathrm{~F} \mathfrak{2}^{\prime}+\mathrm{n}^{\prime \prime}, \mathrm{f} \mathrm{n}^{\prime \prime}\right) .\end{array}\right.$

Legion 5.-Agrion Selys.
Ityponcura lugens Hag. σ^{7}. 6th segment. Guatemala. 8_{-}^{\prime} (F 17-25, f 4-7).

Hyponeura lugens Hag. σ^{7}. 5th segment, post. Guatemala. 8 (F 17-25, f 4-7).

Aryica putrida Hag. ठ'. • th segment. 8 (F 14-21, f 2-10).
Argia bipunctulata IIag. New Jersey. 8 (F 12-14, f 1-3).
Argia agrioides Calt. 0^{2} and + . San Jose del Cabo, Baja Cal. $4\left(\mathrm{~F}_{100^{\prime}-14^{\prime \prime} \text { ree. }}^{1 y^{\prime} 1 y^{\prime}}\right.$, f $2^{\prime}-5^{\prime}, \mathrm{F} 11^{\prime}-15^{\prime}$, f $\left.2^{\prime}-\overline{5}^{\prime}\right)$.

Argia pulla Selys. $\mathrm{O}^{\text {才. }}$. Tepic, Mex. 8 (F 7-9, f 2-3).
Ischnura heterosticta Burm. 0^{7}. 6th segment. Victoria, Australia. 8 (F 13-15).

Ischmura Ramburii Selys var. credula. O. San Jose del Cabo. 8 (F 10-15).

Anomulagrion hastutum Say. ठ'. Pennsylvania. 8 (F 9-10).
Enallagma ebrium Hag. f. 6th segment. New York. ? 8 ($\mathrm{F}^{\prime} 16^{\prime}-18^{\prime}+6^{\prime \prime}-12^{\prime \prime}$, f $0-3^{\prime}+\mathrm{n}^{\prime \prime}$).

Enallagma geminatum Kell. of. 6th segment. New York. 4 (F $15^{\prime}-18^{\prime}$, f n", $\mathrm{m}^{\prime \prime} 14^{\prime}-16^{\prime}$, f n").
Enallagma aspersum Hag. 0^{\top}. 6th segment. New York. 8 ($\mathrm{F} 20^{\prime}-22^{\prime}, \mathrm{f}^{\prime \prime} \mathrm{n}^{\prime}$).

Nehalemia lais Brauer. $\sigma^{\top 7}$. fith segment. Morelos, Mex. 4 (F 25-30, f 18-20).

Pyrriosoma tenellum Vill. 0^{7}. 5th segment. Le Blanc, France. 8 (F 25-30, f 8-12).

Pyrrhosoma minium Harr. σ^{3}. Le Blanc, France. 8 (F 2' $+\mathrm{n}^{\prime \prime}$).

Xanthagrion crythroneurum Selys. ठ'. Victoria, Australia. $8\left(\mathrm{~F}_{2^{\prime}+10^{\prime \prime \prime}-13^{\prime \prime \prime}} \mathrm{6}^{\prime \prime \prime} \mathrm{f} \frac{1^{\prime \prime}-3^{\prime \prime}}{5^{\prime \prime}}\right) 6^{6}$

Ceriagrion glubrum Burm. \& 3^{3}. 6th segment, post. Madagascar. 8 ($\mathrm{F} 2^{\prime}+18^{\prime \prime}-20^{\prime \prime}$, f $5^{\prime \prime}-10^{\prime \prime}$).

Anisagrion allopterum Selys. δ^{3}. 6th segment. Costa Rica. \& (F 10-12, f 1-2).

Erythagrion salvum Hag. ở. San Jose del Cabo, Baja Cal. 8 (F $\left.2^{\prime}+4^{\prime \prime}-6^{\prime \prime}, f 1^{\prime \prime}\right)$.

Erythagrion salum Hag. ${ }^{3}$. San Jose del Cabo, Baja Cal. 8 (F 7-9, f 1-2).

[^4]Leptagrion macrurum Burm. उ3. 7th segment, ant. Brazil. 8 ($\mathrm{F} 6^{\prime}-8^{\prime}+\mathrm{n}^{\prime \prime}$, f $10^{\prime \prime}-20^{\prime \prime}+2^{\prime}-3^{\prime}$).

Leptobasis racillans Selys. $2 \delta^{3}$. ith segment, ant. Tabasco, Mex. 4 (F 13-15, f 10-12).

Agriocnemis femina Braucr. 63. 6th segment. Borneo. 4 (F 10-15, f 8-10)?

Hemiphlebia mirabilis Selys. 子. Victoria. 4 (F 2'-4' $+\mathrm{n}^{\prime \prime}$, $\mathrm{f} \mathrm{n}^{\prime \prime}, \mathrm{F} \mathrm{n}^{\prime \prime}, \mathrm{f} \mathrm{n}^{\prime \prime}$).

Legion 6.-Lestes Selys.

Archilestes grandis Ramb. Sh. San Jose del Cabo, Baja Cal. 8 (Fn) .

Lestes disjunctus Selys. 6th segment, New York. 8 (Fn).
Lestes rigilax Selys. 3^{3}. New York. 4 (F n, fn).
Lestes leda Selys. 6". 6th segment. Tictoria. 4 (F n, f n).
Lestes teniutus Ramb. 干. Tepic, Mex. 8 (Fn)?
Intra-fieneric Variations.
By au examination of the structural formulæ given above it will be seen that a classification into genera based on resemblances in gizzard structure would agree in most cases with that now in use based upon the structure of wings and other external features of the body. If, for instance, we examine the structural formulæ for Sapho orichalcea and S. ciliatu, we find very little difference between the two species. In both we see sixteen fields, which in the former are of three sizes, and in the latter of two. But the number and size of the teeth are approximately equal.

Where a number of species of one genus lave been studied, these all, as a rule, show the same number of folds. Exceptions are seen in the geuera Hetcrina and Heteragrion. Of five species of Hetcrina examined, four show eight folds of the gizzard lining, and one, cinerieana, four folds, although another specimen of the same species (Pl. II, figs. 2 and :3) shows eight folds in both larval and adult gizzard linings; of four species of Heteragrion three have sixteen folds; one, eight.

Even when they vary in the number of folds, species of the same genus are seen to agree almost invariably in the size and number of teeth on each fold, as well as in the arrangement of these.

A markel exception to this was found in the gemus ILeterogrion. Of four species of this genus, three had sixteen folds, rarying in size, the largest folds bearing ummerous teeth (abore forty), the smaller ones bearing from five to thirty, while the fourth species had but eight folls, each foll bearing numerous tecth.

Again, of four species of Argia, three are similar, bearinr eight " F " folds and eight " f " folds, the teeth on all follds being of equal size. But in the fourth speeies, A. "yriondens, there are four " F "' folds, eight " f " folds, and four " F '" folds; on the two latter the teeth are equal in size, but on the four " F ", folds they are arranged in two groups, those of the anterior group being similar to the teeth on the other folds, those of the posterior being much smaller and recurved.

Data for Phylomeny.

When the studies whose results are contained in the present paper were begun, it was hoped that they would yield data of value in determining the phylogeny of the insects investigated. The data are now at hand, but the desired interpretation is yet to be made. One may spin sereral different theories on the lines of descent of these Odonatu if regard be had merely to the armature of the gizzard. But since these theories would rest on precisely the same evidence in each case, it is wise to refrain from such theorizing until these results can be correlated with others drawn from embryological and comparative anatomical data.

It is worth pointirg out, however, as one present gain to our knowledge which will bear on the question of phylogenies, that the occurrence of numerous minute teeth only is a phenomeuon of frecuent repetition, since it is met with in the genus Hetcerina of the legion Calopteryx, and in all species of the legions Euphora and Thore of the Calopterygince, while in the Agrionince it is observed in Mecistogaster and I'seudostigma (legion Pseudostigma), Philogeniu (legion Podayrion), some Disparoneura and Caconenra (legion Protoneuru) and all of the legion Lestes.

The problem which this phenomenon suggests is to determine whether it represents a more primitive condition, originally common to all groups to which the genera named belong, or whether it represents independent, parallel and similar modifications in each group from some other and different form of gizzard-arwatiure.

EXPLANATION OH PLATES II，III AND IV．

All the figures are camera lucida drawings，and represent por－ tions of the gizzard linings，spread out flat．The fraction after each name indicates how much of each lining is shown．A line indicting a scale length of one－tenth millimeter is placed along－ sile most of the figures．

> Plate II.

Fig．1．Culoptery．r maculutu． $0^{\text {² }}$ ．$\frac{1}{4}$ ．
Fig．2．Hetarinu americum．ot from Penusylvania．$\frac{1}{1}$ ．
Fig．3．Hetcrima americamu．Larva．$\frac{1}{4}$ ．
Fig．4．Protonewra sp．，group of sanctu．ㄱ．…
Fig．5．Hetarina vilnerutu．子．$\frac{1}{4}$ ．
Fig．6．Vestalis lnctuosa．子 ． 1 ．
Fig．7．Vestalis apiculis．7．$\frac{1}{4}$ ．
Fig．8．Amphiptery．c agrioides．$\frac{1}{5}$
Fig．9．Libellago caligutu．$\quad \frac{1}{4}$ ．
Fig．10．Euphew imper．© $\frac{1}{4}$ ．

Plate III．

Fig．11．Mierostigma rotundutum．S．$\frac{1}{1}$ ．
Fir．12．Enallagma ebrium．7．$\frac{3}{16}$ ．The small fold f is not developed in the portion figured．
Fig．13．Argia bipunctulata．$\frac{1}{5}$ ．
Fig．14．Megaloprepus cervlatus．．$\frac{1}{8}$ ．
Fig．15．Kanthugrion erythonenrom．$\frac{3}{15}$ ．Probably larval gizzard；compare figs．…－ソ̄．
Fig．16．Megapodagrion venale．万र．$\frac{1}{5}$ ．
Fig．17．Ischnuca verticalis．$\frac{1}{1}$ ．
Fig．18．Heteragrion inca．$\sigma^{-1} \frac{1}{4}$ ．
Fig．19．Tutocnemis malugassicu．－$\frac{1}{8}$ ．
Fig．ㄹ． 0. Pu＇aphlebia sp．$\frac{1}{5}$.
Fig．21．Hemiphlebia mirabilis．＋．$\quad \frac{1}{5}$.
Fig．2．2．Lestex vigilax．ot．$\frac{1}{1}$ ．
Fig．23．Muais strigata．7．1．On either side of the right－ hand f fold is a row of $2-3$ teeth，representing，proh－ ably，a series of still smaller folds．
Fis．24．Leptocnemis bilineata． 0^{π} ．$\frac{1}{8}$ ．

Plate IV．

Fig．25．Ischnure verticalix．Larva，length 4 mm ．$\frac{15}{1} \frac{5}{5}$.
Fig．26．Ischnura verticulis．Larva，length 8 mm ．$\frac{1}{2}$.
Fig．27．Ischnura verticali．．Larva，length $15 \mathrm{~mm} . \frac{1}{2}$ ．

[^0]: ${ }^{1}$ Accepted by the University of Pennsylvania as a thesis for the degree of Bachelor of Science in Biology, June. 1900.
 ${ }^{2}$ Zoolog. Juhrbüch., IX.

[^1]: ${ }^{3}$ Proc. Cal. Acud. of Scinces (Third Neries, Vol. I, No. 12, 1899).

[^2]: ${ }^{4}$ See the report of the meeting of the Academy of Natural Bcieuces of Philadelphia of January 17, 1899, in Science, Vol. IX, p. 183.

[^3]: ${ }^{5}$ In all of these larre, by length I mean the distance measured from the external anterior part of the head to the posterior limit of the last abdominal segment, the gills being exclnded.

[^4]: ${ }^{6}$ It is quite likely that this is a larval gizzard; compare with figs. 25-27.

